quinta-feira, 12 de setembro de 2019


Uma estatística quantica, no contexto da mecânica quântica e no da mecânica estatística, é a descrição de como a energia de cada um dos entes unitários constituintes de um ensemble está distribuida, dada uma energia total E constante, sob a restrição de que:
  1. a energia passa a ser quantizada;
  2. as partículas objeto de estudo passam a ser indistinguíveis.
Isso é feito expressando-se as probabilidades relativas de uma partícula com energia 
De modo clássico, a probabilidade é dada por:
x


FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde
x


FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
é a chamada função de partição
Nos casos quanticos, o que muda é a questão da quantização do espaço de fase, o que impõe um "volume" mínimo de célula possível nesse espaço.


mecânica estatística (ou física estatística) é o ramo da física que, utilizando a teoria das probabilidades, estuda o comportamento de sistemas mecânicos macroscópicos compostos por um elevado número de entidades constituintes microscópicas a partir do comportamento destas entidades, quando seus estados são incertos ou indefinidos. Os constituintes podem ser átomosmoléculasíons, entre outros. É uma teoria que relaciona um nível de descrição macroscópico (Termodinâmica) com um nível microscópico (Mecânica).[1][2][3]
O estudo de todos os microestados destes sistemas em toda a sua complexidade é pouco prático ou mesmo inviável. Para contornar essa dificuldade, a mecância estatística usa um conjunto de cálculos probabilísticos para a ocorrência dos diferentes microestados e atribuir uma série de vínculos matemáticos, como a hipótese de ergodicidade.
A mecânica estatística é usada para explicar, por exemplo, o funcionamento termodinâmico de grandes sistemas, sendo chamada então de termodinâmica estatística ou mecânica estatística de equilíbrio. Leis mecânicas microscópicas não contêm conceitos tais como a temperatura, o calor, ou a entropia. No entanto, a mecânica estatística mostra como esses conceitos surgem da incerteza natural sobre o estado de um sistema quando esse sistema é preparado na prática. A vantagem de usar a mecânica estatística é que ela fornece métodos exatos para relacionar grandezas termodinâmicas (tais como a capacidade térmica) para comportamento microscópico, enquanto que na termodinâmica clássica a única opção disponível seria apenas medir e tabular tais quantidades para vários materiais. A mecânica estatística também torna possível estender as leis da termodinâmica para casos que não são considerados na termodinâmica clássica, tais como sistemas microscópicos e outros sistemas mecânicos com poucos Graus de liberdade.[1]
A mecânica estatística também encontra uso fora do equilíbrio. Outra importante divisão é conhecida como mecânica estatística do não-equilíbrio, que lida com a questão de modelar microscopicamente a velocidade de processos irreversíveis que são movidos por desequilíbrios. Exemplos de tais processos incluem reações químicas ou fluxos de partículas e de calor. Ao contrário de com o equilíbrio, não há formalismo exato que se aplique a mecânica estatística do não-equilíbrio em geral, e por isso este ramo da mecânica estatística continua a ser uma área ativa de pesquisa teórica.

    Histórico[editar | editar código-fonte]

    Em 1738, o físico e matemático suíço Daniel Bernoulli publica seu livro Hydrodynamica, que lançou as bases para a teoria cinética dos gases. Neste trabalho, Bernoulli postulou o argumento, ainda em uso hoje em dia, que os gases consistem de um grande número de moléculas que se movem em todas as direções, que o impacto delas sobre uma superfície causa a pressão e que a temperatura do gás está relacionada à energia cinética dessas moléculas.[4]
    Em 1859, depois de ler um artigo de Rudolf Clausius sobre a difusão de moléculas, o físico escocês James Clerk Maxwell formulou a distribuição de Maxwell de velocidades moleculares. Esta foi a primeira lei estatística em física.[5] Cinco anos mais tarde, em 1864, Ludwig Boltzmann, então um jovem estudante em Viena, conhece a pesquisa de Maxwell e passa grande parte de sua vida desenvolvendo o assunto ainda mais.
    A mecânica estatística foi iniciada na década de 1870 com os trabalhos de Boltzmann, com grande parte dele sendo publicado em 1896, na obra “Palestras sobre Teoria dos Gases”.[6] Os artigos originais de Boltzmann sobre a interpretação estatística da termodinâmica, o teorema H, teoria de transporte, o equilíbrio térmico, a equação de estado de gases e assuntos semelhantes, ocupam cerca de 2.000 páginas no acervo da Academia de Viena e outras sociedades. Boltzmann introduziu o conceito de um conjunto canônico estatístico de equilíbrio e também pesquisou pela primeira vez a mecânica estatística do não-equilíbrio, com seu teorema H.
    Pode-se dizer que a mecânica estatística nasceu dos trabalhos de Maxwell e Boltzmann. Dos estudos sobre as partículas constituintes dos gases (átomos e moléculas) e dos níveis de energia resultou uma grande quantidade de informações sobre as grandezas macroscópicas baseadas somente nas grandezas microscópicas médias.
    O termo "mecânica estatística" foi cunhado pelo físico matemático americano J. Willard Gibbs em 1884.[7] Pouco antes de sua morte, Gibbs publica em 1902 seu livro “Princípios Elementares em Mecânica Estatística”, formalizando a mecânica estatística como uma abordagem geral para atender todos os sistemas mecânicos - macroscópicas e microscópicas, gasosos ou não-gasosos.[1] Os métodos de Gibbs foram inicialmente derivados no quadro da mecânica clássica, no entanto, eles foram de tal generalidade que se adaptaram facilmente à mecânica quântica e ainda hoje formam a base da mecânica estatística.[2]

    Princípios[editar | editar código-fonte]

    Na física, existem dois tipos de mecânica normalmente examinados: a mecânica clássica e mecânica quântica. Para ambos os tipos de mecânica, a abordagem matemática padrão é considerar dois ingredientes:
    1. O estado completo do sistema mecânico em um determinado momento, matematicamente codificada como um ponto de fase (mecânica clássica) ou um vetor de estado quântico puro (mecânica quântica).
    2. Uma equação de movimento que leva o estado a frente no tempo: equações de Hamilton (mecânica clássica) ou a equação de Schrödinger dependente do tempo (mecânica quântica)
    Usando estes dois ingredientes, o estado em qualquer outro momento, passado ou futuro, pode, em princípio, ser calculado. Há, porém, uma desconexão entre essas leis e a experiência prática, não sendo necessário, nem teoricamente possível, saber com exatidão a um nível microscópico a posição e a velocidade de cada molécula durante a realização de processos na escala humana, por exemplo, quando se realiza uma reação química. A mecânica estatística preenche essa desconexão entre as leis da mecânica e da experiência prática do conhecimento incompleto, adicionando alguma incerteza sobre qual estado o sistema está inserido, por meio da probabilidade.
    Enquanto a mecânica clássica considera apenas o comportamento de um único estado, a mecânica estatística introduz o conceito de ensemble estatístico, que é uma grande coleção de cópias do sistema, virtuais e independentes, em vários estados. O ensemble estatístico é uma distribuição de probabilidade sobre todos os possíveis estados do sistema. Na mecânica estatística clássica, o ensemble é uma distribuição de probabilidade sobre pontos de fases (em oposição a um único ponto de fase na mecânica tradicional), normalmente representado como uma distribuição num espaço de fase com coordenadas canônicas. Em mecânica estatística quântica, o ensemble é uma distribuição de probabilidade sobre estados puros, e pode ser resumido como uma matriz densidade.
    O ensemble pode ser interpretado de duas maneiras:[1]
    1. Um ensemble pode ser considerado como a representação dos vários estados possíveis que um único sistema pode estar (probabilidade epistemológica), ou
    2. Os membros do ensemble podem ser entendidos como os estados dos sistemas em experiências repetidas em sistemas independentes, que foram preparados de um modo semelhante, mas imperfeitamente controlado (probabilidade empírica), no limite de um número infinito de ensaios
    Estes dois entendimentos são equivalentes para fins diversos, e serão utilizados de maneira intercambiável neste artigo.
    Em qualquer modo que a probabilidade é interpretada, cada estado no ensemble evolui ao longo do tempo de acordo com a equação de movimento. Assim, o próprio ensemble (a distribuição de probabilidade sobre estados) também evolui, com os sistemas virtuais do ensemble continuamente deixando um estado e entrando em outro. A evolução do ensemble é dada pela equação de Liouville (mecânica clássica) ou a equação de von Neumann (mecânica quântica). Estas equações são derivadas pela aplicação da equação de movimento mecânico separadamente para cada sistema virtual contido no ensemble, com a probabilidade do sistema virtual ser conservado ao longo do tempo à medida que evolui de estado para estado.
    Uma classe especial de ensemble trata daqueles que não evoluem ao longo do tempo. Esses ensembles são conhecidos como ensembles de equilíbrio e a sua condição é conhecida como equilíbrio estatístico. O equilíbrio estatístico ocorre se, para cada estado no ensemble, o ensemble também contém todos os seus estados futuros e passados com probabilidades iguais à probabilidade de estar nesse estado. O estudo dos ensembles de equilíbrio de sistemas isolados é o foco da termodinâmica estatística. A mecânica estatística do não-equilíbrio aborda o caso mais geral de conjuntos que mudam ao longo do tempo, e/ou conjuntos de sistemas não-isolados.

    Propriedades[editar | editar código-fonte]

    A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades dos mesmos em um nível macroscópico da natureza.[8]
    Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura  que é calculado como
     (graus de liberdade).
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura 
    Supondo que  é o número de moléculas total em um volume  de um gás à pressão  então tem-se que:
     ou  sendo  
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.
    A pressão sobre uma camada  deve ser tal a balancear o peso.
    A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura  sua força vertical será a força sobre a área sendo representado por  (pressão).
    Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo  a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.
    Sendo  a força da gravidade em cada molécula,  é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Assim, sendo  e também  constantes , elimina-se  e resta a equação para 
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Tem-se a variação da densidade em função da altura na atmosfera do exemplo:
     sendo  a densidade em relação à 
    Densidade de átomos n em função da altura h
    O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a
    Sendo que  é a energia potencial de cada átomo.
    Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.
    Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula  o número de moléculas nessa mesma porção, sendo que a força age na direção  Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por  então a força sobre cada átomo multiplicada pela a densidade  e por  deve ser balanceada pela diferença de pressão, ou seja,
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    sendo  o trabalho feito sobre uma molécula ao transportá-la de  até  seu trabalho é igual á diferença de energia potencial (ao quadrado)  assim,
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Obtém-se da equação de força anterior:
    x


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Resultando em
    Sendo  a variação de energia do estado final e inicial.
    Esta ultima expressão é tratada sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:
    A probabilidade de encontrar moléculas em uma dada configuração espacial e tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.
    Tal probabilidade diminui exponencialmente com a energia divida por 

    Mecânica estatística de equilíbrio[editar | editar código-fonte]

    Question book.svg
    Esta seção não cita fontes confiáveis e independentes (desde junho de 2016). Ajude a inserir referências.
    O conteúdo não verificável pode ser removido.—Encontre fontes: Google (notíciaslivros e acadêmico)
    mecânica estatística de equilíbrio, também chamada de termodinâmica estatística, tem como objetivo derivar os princípios da termodinâmica clássica dos materiais a partir de suas partículas constituintes e a interação entre as mesmas. Ou seja, a mecânica estatística de equilíbrio relaciona as propriedades macroscópicas dos materiais em equilíbrio termodinâmico com os comportamentos microscópicos ocorrendo dentro do material. Porém, enquanto a mecânica estatística envolve dinâmica, na termodinâmica estatística há o equilíbrio estatístico, ou estado estável. Isso não significa que as partículas não se movam (equilíbrio mecânico), mas sim que o ensemble não está evoluindo.

    Postulado de igual probabilidade a priori[editar | editar código-fonte]

    Uma condição suficiente (mas não necessária) para o equilíbrio estatístico com um sistema isolado é que a distribuição de probabilidade seja uma função somente de propriedades conservadas (energia total, o número de partículas totais, etc.). Existem muitos conjuntos de equilíbrio diferentes que podem ser considerados, e apenas alguns deles correspondem à termodinâmica. Postulados adicionais são necessários para dizer porque o conjunto para um determinado sistema deve ser de uma forma ou de outra.
    Uma abordagem comum encontrada em muitos livros didáticos é usar o postulado de igual probabilidade a priori. Esse postulado diz que
    "Para um sistema isolado com uma energia conhecida com exatidão e a composição exatamente conhecida, o sistema pode ser encontrado com igual probabilidade em qualquer microestado consistente com tal conhecimento."
    Portanto, o postulado de igual probabilidade a priori proporciona a base para o conjunto microcanônico descrito abaixo. Há vários argumentos a favor do postulado de igual probabilidade a priori:
    • Hipótese ergódica: Um estado ergódico é aquele que evolui ao longo do tempo para explorar "todos estados acessíveis": todos aqueles com a mesma energia e composição. Em um sistema ergódico, o conjunto microcanônico é o único conjunto de equilíbrio possível com energia fixa. Esta abordagem tem aplicabilidade limitada, uma vez que a maioria dos sistemas não são ergódicos.
    • Princípio da indiferença: Na ausência de quaisquer outras informações, só podemos atribuir probabilidades iguais para cada situação compatível.
    • Entropia máxima: Uma versão mais elaborada do princípio da indiferença afirma que o conjunto correto é o conjunto que é compatível com a informação conhecida e que tem a maior entropia de Gibbs.
    Outros postulados fundamentais para a mecânica estatística também foram propostos.

    Ensembles ou conjuntos[editar | editar código-fonte]

    Existem três ensembles de equilíbrio com uma forma simples, que podem ser definidos para qualquer sistema isolado delimitado dentro de um volume finito. Estes são os conjuntos mais frequentemente discutidos em termodinâmica estatística. No limite macroscópico, todos eles correspondem a termodinâmica clássica.

    Conjunto microcanônico[editar | editar código-fonte]

    Um conjunto microcanônico é um conjunto de réplicas de microssistemas identicamente preparados. Descreve um sistema com energia precisamente determinada e composição fixa (número preciso de partículas). Cada réplica tem os mesmos possíveis valores de massa(m), volume(V) e energia (E), mas cada uma pode evoluir diferentemente através do espaço de configurações. No conjunto microcanônico não há troca de calor entre o sistema e o exterior e o número de partículas é fixo. O conjunto microcanônico contém com igual probabilidade cada estado possível que é consistente com essa energia e composição.

    Conjunto canônico[editar | editar código-fonte]

    Semelhantemente, um conjunto canônico é um conjunto de réplicas de um sistema, identicamente preparados, onde cada um tem valores definidos de massa(m), volume(V) e temperatura(T). Descreve um sistema de composição fixa que se encontra em equilíbrio térmico com um banho de calor de uma temperatura precisa, ou seja, no conjunto canônico o número de partículas é fixo, mas o sistema troca calor com o ambiente. O conjunto canônico contém estados de variação de energia, mas composição idêntica; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total.

    Conjunto grão-canônico[editar | editar código-fonte]

    Descreve um sistema com a composição não fixada (número de partículas incerto) que está em equilíbrio térmico e químico com um reservatório termodinâmico. Assim, no conjunto grão-canônico o sistema pode trocar calor e partículas, ou seja, o número de partículas pode variar. O reservatório tem uma temperatura precisa, e os potenciais químicos precisos para diversos tipos de partículas. O ensemble grão-canônico contém estados de variação de energia e número variado de partículas; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total e número de partículas totais.
    Para sistemas contendo muitas partículas (o limite termodinâmico), todos os três conjuntos listados acima tendem a ter um comportamento idêntico. Nesse caso, a escolha do conjunto é simplesmente uma questão de conveniência matemática.
    Casos importantes onde os conjuntos termodinâmicos não dão resultados idênticos incluem:
    • Sistemas microscópicos.
    • Grandes sistemas em fase de transição.
    • Grandes sistemas com interações de longo alcance.
    Nestes casos, o conjunto termodinâmico deve ser escolhido corretamente, pois existem diferenças observáveis ​​entre estes conjuntos não apenas no tamanho das flutuações, mas também em quantidades médias, tais como a distribuição de partículas. O conjunto correto é o que corresponde à maneira como o sistema foi preparado e caracterizado, em outras palavras, o conjunto que reflete o conhecimento sobre esse sistema.
    Ensembles termodinâmicos
    MicrocanônicoCanônicoGrão-canônico
    Variáveis fixasN, E, VN, T, Vμ, T, V
    Características microscópicas
    • Número de microestados
    Função macroscópica
    • Entropia de Boltzmann

    x



    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D